Game Theory

Static Games with complete information

Institute for Management and Planning Studies
Ali Mazyaki, Ph.D.



EFo90 9 (o> b
e Varian, Hal R. (1992): “Microeconomic Analysis”, London:
W. W. Norton & Co.

 Gibbons, Robert (1992): “A Primer in Game Theory’,
Pearson Education Limited: Harlow.

e Mas-Colell, A., Whinston, M., Green, J. (1995):
“Microeconomic Theory”, Oxford University Press: New

York, Oxford.
5l o 5 soges Y (Oligopoly) alfus jlassl el 4 pulssus oS bl
0,93 3l (isu cpl 0 plpls a1y ol ayla sl oo 3o cleMbl slad] -
w30 )18 (o 3y90 [y Ll lad ¥ 4yl 55 slaidl
4 gl 3l lsie 4 D5 5 Jgl e Lol g (0 o g pows g pgd é;t" ‘
9)
3900w |y 395 W gy 0 e Mas colell ww;:?,u , .
> O



4

Tl

sbobre b aonil b (S05L (lsis 4 olgd .l (g5 ol (S5 0
| ‘|
92 2 )

il asly slael (g5b ke S&5 @ g0 el bl

U Cud SI8 g el Lo
e g9y 5l & (s (g9,

223)S (b bl opl s> S
b S S pas Ggdio 4 o)



4

Tl

ol asls 2 clbrionas 3,65y dddllae n g3l 4 a3

S Hlie gl

Conss 9390 (gloaisS dgamo 33yl ,8 € 5 Lkt clagl

w2y ol 3l g cpl 4 i b —

30 AS o ot &S Lre (ps cunl (gl 4l la o5L @ Lo
Aol 4wl g)ld) e bl sl



4

R edlatnl dyge o Sl a4 b (gib alas VAYe Lo e
:Cawl D5lg0 ol o b eoliiwl sdes DS o
NS slaisl —
(Finance) 4JlL —
Cawlow 9 )08 (sl 4y ylas —
imio gl ol —



Jol Jbo

S5 prenad 4565l Lol (slroyod )90 )3 Cunl I3 08T 5,8 ¢

11/5/2013

oS

e s Sl oMSan I (S b ol 5 ol s & Lo -
158 o OBl ]y (K “B” 6 “A” il -Y

A

B

\Ve

1¥9

VO

s\;ﬂf Y a8 ).u_“ A A 3

VY




prisoners dilemma ;g (cloxe
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D9 (g
A B
A (16, 16) (9, 20)
B (20, 9) (12, 12)
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prisoners dilemma ;g (cloxe
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Don’t Confess| Confess

Don’t Confess (-1, -1) (-10, 0)

Confess (0, -10) (-5, -5)
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prisoners dilemma ;g (cloxe

Dguiwe 03 yisles Ladely opl L \/w S5 90 loxo ®

A B
A (-1,-1) (-10, 0)
B (0, -10) (-5, -5)
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prisoners dilemma ;9 sloxs

Note that the game contains

— A number of players: here {1, 2}

— Players’ possible moves and strategies: {Confess,
Don’t confess} or {A, B}

— Players’ payoffs for all possible strategy choices
— Who knows what
— The timing of moves



prisoners dilemma lu; 9 (sloxe

Let us recall the central properties of this game:

— While the game can be played repeatedly, here, we
assume that the game Iis static, played only once

— Players choose simultaneously

— No binding agreements, no communication
allowed

— Complete information (all players know all payoff
functions)

— Thus we are 1n the field of “static games with
complete information”



prisoners dilemma lu; 9 (sloxe

Examples:

Solving problem sets in group: some colleagues may shirk

Fishing from a lake by two countries
Global warming

Solutions:
“Communication” does notwork

“Contracts”, “Regulations”, defining some tax on the bad action
(confess here) or “Education” may so/ve or mitigate the problem

“Repetition” of PD can improve the outcome



Static Games with Complete information

1. Games In the strategic or normal form
Dominant and dominated strategies
Rationalisable strategies

Nash equilibrium in strategic-form games
Mixed strategies

Existence of Nash equilibria

Oligopoly theory

~N o Ok WD



1- Games In the strategic or normal form

Definition: A strategic-form game or “normal
form representation” I'n IS a tuple:

— A set of players: {1, ..., I}
— Strategy set of player I: Si

— Payoff function of player |
U: S1 X S2%X ... xSI— R

— Each player chooses a strategy si In S
— A strategy profile is (s1,...,s1) or, shorter:
(Si, 54)
Write Tn=[l, {Si}, {u()}]



A note on utility function

We usually assume that players are utility maximisers

In situations of uncertainty, we assume that players
are “expected utility maximisers” and that their utility
function is a von Neumann Morgenstern utility
function

Standard economics assume that players maximize
own payoffs and ignore others’ payoffs

In behavioural economics, we drop these assumptions
and learn about non-maximising agents, players who
care for others (e.g., envy, altruism), and players who
are inconsistent with vNM utility functions



2- Dominant and dominated strategies

Back to the prisoner’s dilemma. How should players
play such a game? Where will they end up? In the PD
(with standard rational selfish agents), players have a
dominant strategy:

IDGﬁ"'“““ 8.B.1: A strategy s;€ S, is a strictly dominant strategy for player i in game
[y = [1. {S;}. {v;()}] if for all s +# 5,, we have
(s, 8_;) > u(s;, s_))

foralls_,eS_,.

Deflnition 8.B.2: A strategy s;€S; is strictly dominated for player / in game

Iy =11.{S;}. {u;(-)}] if there exists another strategy s,e S; such that for all
S_; € S-,‘,

ui(si, s.;) > uds;, s_,).

In this case, we say that strategy s; strictly dominates strategy s,.

YY) ~‘IVT Y 4% H JA S o 16

Weakly comes with the equality



Strictly dominated strategies

General 1dea: Strategies with lower payoffs for all s-I
will not be played

No matter what the other players do, a rational player
will never choose a strictly dominated strategy

—> Elimination of strictly dominated strategies

This 1s straightforward in the PD: “don’t confess” 1s
strictly dominated; since there are only two strategies,
“confess” 1s dominant; thus, both players will confess



Strictly dominated strategies in PD

A B
A (-1,-1) (-10, 0)
B (0, -10) (-5, -5)
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Strictly dominated strategies in PD

A (-1,-1) (-10, 0)
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Strictly dominated strategies in PD
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Iterated elimination of strictly dominated strategies

If it Is common knowledge that all players are rational,
we can go one step further. We can repeat the process
of Elimination

- lterated elimination of dominated strategies

Note that the iterated elimination of dominated
strategies makes a stronger assumption on rationality
than does just one round of elimination

We need to be 100% sure that the other players are
rational as well and thus have eliminated dominated
strategies to repeat the elimination procedure



Iterated elimination of strictly dominated strategies

S, 1 3% S,
s:t [(1,1)] (2,0) |(3,-1)
si? |(2,0) | (4,0.5) | (6,0)
s> (3,1)| (3,2) | (5,1)

11/5/2013 VYAY ((Sahe oY 4 iy 3 )3 sl



Iterated elimination of strictly dominated strategies

Sz1 522 523
st (G20 (31— v
s:2 | (2,0)(4,0.5)| (6,0)
s 1(3,1)] (3,2) | (5,1)

The game Is solvable by iterated elimination of
dominated strategies



Iterated elimination of strictly dominated strategies

Sz1 522 523
st (T (2,0 (31— v
s: | (2,0) | (4,0.5)]| (6,0)
s | (31)] (3,2) | (5,1)

2" Step

The game Is solvable by iterated elimination of
dominated strategies



Iterated elimination of strictly dominated strategies

Sz1 522 523
st (T (2,0 (3t v
s:2 | (2,0) | (4,0.5)]| (6,0)
s | (31)] (3,2) | (5,1)

2"d Step 3"d Step

The game Is solvable by iterated elimination of
dominated strategies



Iterated elimination of strictly dominated strategies

Sz1 522 523
st (T (2,0 (3t v
s:2 | (2,0) | (4,0.5)]| (6,0)
st {332 (5 o

2"d Step 3"d Step

The game Is solvable by iterated elimination of
dominated strategies



Iterated elimination of strictly dominated strategies

Spl S22 9,3
st T (20 T3Fh) T o
s:2 | (2,0) ((4,0.5)/ (6,0)
st T 32 {5 o

2"d Step 3"d Step

The game Is solvable by iterated elimination of
dominated strategies



Iterated elimination of weakly dominated strategies

The difference between strictly and weakly dominated
strategies seem innocuous at first sight

However, we cannot exclude weakly dominated
strategies are the basis of pure rationality: a weakly
dominated strategy does equally well for at least one
strategy of the other player

The difference Is also crucial when it comes to the
Iterated elimination of dominated strategies

Iterated elimination of weakly dominated strategies can
lead to different results, depending on the order of
elimination



Iterated elimination of weakly dominated strategies

L R

U [(5,1)| (4,0)
M |(6,0)] (3,1)
D [(6,4)| (4,4)

U and M are weakly dominated

11/5/2013 YY) Sohe oF 4l ydy o A ol "



Iterated elimination of weakly dominated strategies

L R
U__(_S, 1) (—476) 15t Step
R A m——
0 | (6.4) Q@AY

15t Attempt: Eliminate U first
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Iterated elimination of weakly dominated strategies

L R
U—ﬁ, 40
| (—3'1) 15t Step
> @ ¢

2"d Step

2nd- Attempt: Eliminate M first

11/5/2013 YWY (S e o F 4ty 3 A o) 1



Best replies

The notion of a best reply Is essential in game theory

Definition: Given some s’-i In S-i, player 1’s best reply
(or best response) are the s*i in Si for which

ui(s*i,s’-i) > ui(si,s’-i) for any siin Si

In the prisoner’s dilemma, the best reply to “confess” 1s
“confess”; and the best reply to “don’t confess” 1s
also “confess™.

The logic of best replies is underlying the concepts of
rationalisability and Nash equilibrium



Best replies

S,! S,° S’
s, 1,1 | 20 | 3 -1
5,2 2.0 6,0
5,3 3,1 3.2 | 5,1

We mark the best replies by underlining the payoffs in
the matrix



3- Rationalisablestrategies

A concept closely related to dominated strategies is the
set of rationalisable strategies

This concept requires the iterated elimination of
strategies that are never best replies

A strategy that is strictly dominated Is never a best
reply. However, a strategy may never be a best reply
even though it is not strictly dominated

Thus, the iterated elimination of strategies that are never
best replies eliminates more



3- Rationalisablestrategies

With the modifications, s:! is not dominated any more.
But s:* Is never a best reply

—> Thus 1t Is not rationalisable



4- Nash equilibrium in strategic-form games

We have seen that the (iterated) elimination of
dominated strategies can get us quite far; e.g., they
give us a solution for the prisoner’s dilemma

Often, however, there are no dominated strategies

Next approach: Can we find points in games that are
self-enforcing?

This i1s the Nash equilibrium idea

Definition 8.D.1: A strategy profile s = (s,, ..., 5,;) constitutes a Nash equilibrium of
game [y, = [1. {S;}, {u;(-)}] it for every i=1,.. ., 1,

u;'(s;'r 3—1'] Z UI;(S_:'. S—i)

for all s;€ S;.



4- Nash equilibrium in strategic-form games

In words, If all players play a best reply to the other
players actions, no player will want to deviate and
thus we have a Nash equilibrium

If the process of iterated elimination of dominated
strategies leads to a unique outcome, this outcome
must be a Nash equilibrium; and every Nash
equilibrium survives the iterated elimination of
dominated strategies

Nash equilibrium strategies are rationalisable, but not
vice versa. The set of rationalisable strategies is larger
than the set of Nash equilibrium strategies



Multiple Nash equilibria:
The battles of the sexes

11/5/2013

Maryam

All
Opera | Football
Opera 2,1 0,0
Football 0,0 1,2
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Multiple Nash equilibria:
The battles of the sexes

Al

Opera | Football

Opera @ 0,0
Football | 0,0 (1,2

No (weakly) dominated strategy, rationalizability
does not help either. There are two pure strategy
equilibria. The BoS Is a coordination game.

Maryam




Multiple Nash equilibria in coordination games

All

Opera | Football

Opera 0,0
Football | 0,0 (7,7 )

In the BoS, it seem difficult to give preference to one
equilibrium over another as there are conflicting
Interests. In the above variant, it seems obvious that the
players will coordinate on Opera.

Maryam




Multiple Nash equilibria in coordination games

Examples of coordination problem:

Meeting places, Dating, Chat sites, ...

Network externalities: Good or Bad standards the first
commers or big companies normally provide the equilibrium
(Windows or Linux)

Bank runs = Rush to drawing out all the deposit if there is a
threat that all others do so

There Is a demand for control (or leadership)!



Multiple Nash equilibria in coordination games

All

Opera | Football

Opera 0, 6.9
Football | 69,0 (7,7 )

In this variant, the equilibria are still the same, and
Opera is still payoff dominant. However, now
choosing football seems less risky

11/5/2013 AR \_554% Y u)"‘“ 2A Slaid) 47
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Multiple Nash equilibria in coordination games

Formally, a Nash equilibrium is considered payoff
dominant if it is Pareto superior to other Nash
equilibria in the game.

A Nash equilibrium is considered risk dominant If it
has, In the notion of Selten and Harsanyi, the largest
basin of attraction.

Strategy pair (right, right) risk

dominates (left, left) if the product left right

of the deviation losses is highest left a. A c. B

for (right, right), that is, if
(c—d)(C-D)>(b—a)B—A). right | b,C | d,D




The chicken game

All

L R

L 20. 20 0. 30
Mahmood

R 30,0 | -10,-10

Two pure-strategy equilibria; Chicken (also called
“war of attrition”) 1s a game of conflicting interest

11/5/2013 YY) (S o 4y 3 A L) "



The chicken game

All

L R

Mahmood - 20, 20
R 210, -10

Two pure-strategy equilibria; Chicken (also called
“war of attrition”) 1s a game of conflicting interest




Discussion of the

Nash Equilibrium Concept

MWG (p. 248-9) give five reasons why we could expect
player to play a Nash equilibrium (NE)

1- NE as a conseg

uence of rational inference

2- NE as a necessary condition if there is a
unique predicted outcome of a game

3- NE as a focal point
4- NE as a self enforcing agreement
5- NE as a stable social convention



Matching Pennies

Player 2
Head Tall
Head 1, -1 -1, 1 |
Player 1 } I
Tall 1,1 ] 1,1

No pure-strategy equilibrium in matching pennies
(the arrows Indicate the best replies)



Mixed strategies

Definition 7.E.1: Given player /'s (finite) pure strategy set S, a mixed strategy
for player /, ¢,: §, — [0. 1], assigns to each pure strategy s;€ S, a probabitity
a,(s;) = 0 that it wili be played, where } ¢ 7,5;) = 1.

Definition: A mixed strategy is a probability
distribution over player 1’s strategies. That is,
when Si Is countable, a mixed strategy is a
vector pi such that Xk px' =1, where 0 <pk' < 1.

(The continuous case Is analogous)



Mixed strategies

Definition 8.D.2: A mixed strategy profile ¢ = (g4, ..., o,) constitutes a Nash equi
librium ot game T = [I, {A(S,)}. {v;(-}}] if foreveryi=1,. .., 1,

u.t'{ﬂ[: J—j) 2 uf{ﬂ;r 'a-—.l)
for ali ¢; € A(S;).

Definition: A mixed strategy equilibrium 1s a
mixed strategy profile (p:*,..., pn*) such that,
for each player 1 and possible mixed strategy pi
the expected utility Is maximized. That is,

Efui(pi*,p-*)] = E[ui(pi,p-*)]



Mixed strategies in the matching pennies

Suppose that, in matching pennies, players
randomize such that player | chooses Head

with probability pi
Player 1’s expected payoff is:

= Pa(p2(1)+(1-p2)(-1))+(1-p2)(p2(-1)+(1-p2)(1))
ﬁul /Op1 = 4p2-2, thus, cui/Op1 > 0 Iff p=> 1
Thus 1’s best reply 1s Head Iff p2 > % and Tail iff
P2< 7>
he reverse holds for player 2. In the unique
Nash equilibrium, both players randomise with

Pi =1




Mixed strategies In the battle of the sexes

In the battle of the sexes, there is also mixed
strategy equilibrium. Suppose i1 chooses Opera
with probability pi.

Alr’ expected payoff 1s:

Ua = pa(pm(1)+(1-pm)(0))+(1-pa)(pm(0)+(1-pm)(2))

Oua/opa =3pwm-2, thus oua/opa > 0 Iff pm > 2/3

oum/0pm =3pa-1, thus oum/opm > 0 Iff pa > 1/3

Ali’ best reply is Opera Iff pm > 2/3 and football iff
pm < 2/3

In the mixed strategy Nash equilibrium, we have
pa=1/3 and pm = 2/3



Mixed strategies in theBoS best responses

bra

213

Pa
The best reply correspondence of Ali

11/5/2013 YFAY (S oY 43y 353 Sl
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Mixed strategies in theBoS best responses

bra

213

Drv

Pa
The best reply correspondence of Maryam

11/5/2013 VPN (S oY A3y 5 A L
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Mixed strategies in theBoS best responses

bra

213

Drv

Pa

The best reply correspondences intersect in three
points, these are the three Nash equilibria

11/5/2013 YY) (S o 4y 3 A L) ”



Note 1 on mixed strategies

The logic of mixed-strategy equilibria is as follows

* The other player randomises such that I am
Indifferent between all my strategies

* As | am indifferent, | could choose any strategy—
but choosing any strategy Is not an equilibrium. |
randomise such that the other player is indifferent
In equilibrium, too

* In the BoS, Ali puts more weight on football, but

this is not because he prefers football to Opera, it
IS because he needs to make Maryam indifferent

—> It 1s not clear that non-experts can apply this

logic, as some studies (Goeree and Holt (2001))
have shown




Note 2 on mixed strategies

Mixed-strategy equilibria may appear not to be
particularly realistic at first sight. When do we—
literally—randomise our choices?

However, in many real-world situations, It Is
essential that our moves cannot be predicted by
our opponents. Then we need to randomise

There are plenty of economic situations where this
applies. Particularly interesting ones have been
Investigated empirically in sports: Tennis (Walker
an Wooders, 2001) and penalties in football
(Palacios Huerta, 2001). (Note tha these
arguments apply only when opponents meet
repeatedly, while we had static games so far)



6- Existence of Nash equilibrium

Proposition 8.D.2: Every game Iy, = [/, {A(S)}, {¢;(-)}] in which the sets §,, .. .,
have a finite number of elements has a mixed strategy Nash equilibrium.

Theorem (Nash, 1951). Every strategic form game has a
Nash equilibrium in mixed strategies.

(Note: a pure strategy IS a mixed strategy with a
degenerate probability distribution where some pi=1,
Thus, the theorem includes games with pure equilibria
only, to0)

Following Gibbons (1992), we will illustrate the proof for
a bi-matrix game (i.e., a two player / two actions game)

Left | Right
Up | X,- | V-

Down Z. - W, -

7




6- Existence of Nash equilibrium

There are four possibilities for Rows’ payoffs

1) Xx>2zandy>w -> Up is strictly dominant

1) X<z andy <w -2 Down is strictly dominant
x>z andy <w - Both U and D are best repl.
IV)X <zandy>w - Both U and D are best repl.

* Inthe 3rd case, Up is the best reply if Column is likely
to play Left, and Down if Column is likely to play Right
In the 4th case, the opposite conclusion hold

Left | Right
Up | X,- | V-

Down Z. - W, -

1 )




6- Existence of Nash equilibrium

(Up) 1

..............

(Down)

(Left)

1 g
(Right)

Case (i)

(Up) 1

(Down)

q 1 4

(Left)

Souré¢é” Gibbons Figure 1.3.10.

(Right)

Case (ii1)

(Up) 1

(Down) =f==sscccooaeaaes
1q
(Left) (Right)

Case (ii)

Up)1 T oy

............

(Down)

(Left) (Right)
Case (iv)

YY) 6\5&_!_)46 Y duﬁ_)u_uﬁ);ﬁm‘

Here are the four
cases Illustrated
graphically. g
denotes the
probability that
the Column player
chooses Left, and
r 1S the probability
that the Row
player chooses Up

59



6- Existence of Nash equilibrium

(Up) 1

g*(r)

(Down)

(Left)

(Up) 1

(Down)

1 g
(Right)

Case (1)

(Left)

11/5/2013

Source: Gibbons ¢, 1510

1 g
(Right)

Case (ii1)

(Up) 1 ;

(Down) E

g*(r)

(Left)

(Up)

(Down)

(ase (11)

(Right)

1y

f oo

(Left)

Case (1v)

1 g
(Right)

VPR (S0 e Y 4 i 3 A L)

Of course, we can
do the same for
the Column
player. There are
also four
possibilities,
corresponding to
cases (1) — (1v)

60



6- Existence of Nash equilibrium

Combining, the four possibilities for each of the
two players, there are 16 possibilities in total

There will always be at least one intersection. At
this intersection, both players play best replies
and we have a Nash equilibrium

To be precise, you can verify that there are
either exactly one or three intersections in all
16 cases

This can be generalized. The general proof Is
based on Kakutani’s (1941) fixed point
theorem



6- Existence of Nash equilibrium

| Fixed-point theorems
1 ! can be illustrated as
f(x) follows
x*

-------------- g If f(X) is a continuous

j function on the
A domain [0, 1] and
| with the range [0, 1],
then there Is at least
one value of x such
Figure 1.3.13. that f(x*)=x*

11/5/2013 YFAY (S oY 43y 353 Sl



6- Existence of Nash equilibrium

To prove Nash’s theorem, we need to proceed 1n
two steps

(1) Show that a fixed point of the best reply
correspondence iIs a Nash equilibrium

(2) Use a fixed point theorem to prove that the
best reply correspondence must have a fixed
point

Problem: If f(x) Is not continuous, we might not
get a fixed point



6- Existence of Nash equilibrium

Kakutani’s fixed point
theorem allows to deal 1
with such cases

If the best reply fx)

correspondence / /

behaves like f(x) in L
figure 1.3.14, we can % .
include both circles X' 1 «x

and the entire interval

betwgen them.“Thus
FTOEQUTI EO Figure 1.3.14.

11/5/2013 YY) Sohe oF 4l ydy o A ol o



John Nash “A beauti f ul

John Forbes Nash,
born 13.06.1928

Nobel Prize in
Economics 1994
(together with R.
Selten and J.
Harsanyi)

11/5/2013



John Nash “A beauti f ul

HE SAW THE b

WORLD IN A WAY

NO ONE COULD HAVE
IMAGINED

NOW PLAYING AR
THEATERS EVERYWHFGREm

"ED HARRIS

“A beautiful mind” is the title of S. Nazar’s
wsNash blography oo o6



John Nash “A beauti f ul

“Adam Smith needs revision”, Nash says in the
film, because “the best result will come from
everybody in the group doing what’s best for
himself, and the group”



/- Oligopoly theory

We will cover

7-1- Bertrand duopoly
7-2- Cournot duopoly



/-1- Bertrand duopoly

Assumptions of the model:

* Two firms with linear cost C(gi)=cqi

* Firms strategically choose prices

« Demand is given by the function X(p)

* Depending on prices, individual demand functions are:

x(p;) Up;<p
Xi(Pj Px) = %X(P,‘) ifP; = P
G ifp; > p,.

* Firm 1’s profit is thus: X1(p1, p2)(p1— C)
* Firm 2’s profit is thus: X2(p1, p2)(p2— c)



/-1- Bertrand duopoly

The logic of the Bertrand model is that the firm with the
lower price captures all demand (there are no capacity
constraints, so firms can produce to meet demand)

Many textbooks tell a dynamic story for the Bertrand
duopoly: e.g., firm 1 charges ps, then firm 2 undercuts
this price, then firm 1 undercuts firm 2 again and so on
until p. = p2= ¢ in equilibrium

While the result as such is correct, the dynamics is
misleading as, remember, firms are playing a static
(oneshot) game here

Can we prove the result rigorously for the static game?



/-1- Bertrand duopoly

Proposition: In the unique Nash equilibrium of
the Bertrand game, p: = p2 =

Proof. 1) We first establish that Pr=pP2=CISan
equilibrium by establishing that it does not
pay to deviate from the equilibrium

Now, deviating to a lower price p < c implies
losses while deviating to a higher price p > ¢
destroys demand

Thus, p: = p2 = c 1s a Nash equilibrium



7/-1- Bertrand duopoly

2) We need to show that there is no other equilibrium
(P1,P2):

Suppose we have py > po (w.l.0.g.), then

— if pp < ¢, firm 2 can
improve profits with p, = ¢

— ifp1 >pp>c, firm 1 can
improve profits with p1 = p»

— ifp1 > pr=¢, firm 2 can
improve profits with p, = pq

— ifpp =po >¢, firm 1 can
improve profits with p1 = p1 — ¢

—> Thus there Is no other Nash equilibrium

11/5/2013 YFAY o Sade oY 43 3 A Sl
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/-1- Bertrand duopoly

Thus, even with only two firms, we get perfectly
competitive markets; free entry and more firms would
not imply more competition, that 1s, “two are sufficient
for competition”

This Is the famous Bertrand Paradox

The result is paradox because we do not believe that two
firms only would be sufficient to lead to perfect
competition

Even from a theoretical point of view, one might be
sceptical about the Bertrand outcome

When p1 = p2 = ¢, firms make zero profit. If so, they
might as well switch to any other action. This will also
get them zero payoff but might trigger a new dynamic



/-1- Bertrand duopoly

Dufwenberg et al. (2007) have shown this for a
repeated Bertrand oligopoly experiment

They run two variants. In the first one is a normal
Bertrand game with ¢=0. The Nash equilibrium
price Is 2 here. The second variant introduces a
price floor of 10. The Nash equilibrium price is
10 here Mean prices over time, separately for

the low floor and high floor duopoly
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Intriguingly, the first
variant exhibits higher
prices than the one
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Why? Again, players have little incentive to stick to the
equilibrium with the low price floor. Deviating costs
them only 1/2. But, by deviating, they can for example
try to make the other player also charge a higher price

In the Nash equilibrium with the price floor, players

make a decent payoff and deviating does make them
lose Money

Technically, the Bertrand-Nash equilibrium without any
price floor Is not a strict Nash equilibrium

Definition: A strategy profile (s:*, ...,sn*) Is a strict Nash
equilibrium if for all 1, siin Si, we have

ui(Si*,s*-i) > Ui(Si,s*-)
Put differently, the Bertrand-Nash equilibrium is in
weakly dominated strategies (without price floor)



/-1- Bertrand duopoly

here are several ways to escape the Bertrand
Paradox:

1- quantity-setting firms (Cournot)

2- repeated-play version of the Bertrand price
game

3- Introduce product differentiation

4- firms with capacity constraints (not done
here)




/-2- Cournot duopoly

Assumptions of the Cournot model: firms set
guantities; the price Is determined by an
auctioneer who sets the price such that all output
produced is sold

The Cournot model uses Inverse demand
p(qi+Qzt...+0n)

Example: Cournot duopoly with linear demand,
p=a — g1 — g2, and constant marginal cost, cq;

The profit function is pgr —cgr = (a— g1 — g2 — C)q1

From the first-order condition, firm 1’s best reply to
firm j’s output Is: gi = (a — ¢ — q;)/2; the best reply
functions intersect at gi* = (a— ¢ )/3
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Rationalisable strategies in Cournot duopoly:

* Initially, we have Si = [0, «)

15t round: producing more than (a — c)/2 Is never
a best reply, thus, Si = [0, (a — ¢)/2]

« 2" round: if Si = [0, (a— c)/2], producing less
than (a—c)/4 is never a BR, thus, Si = [(a — ¢)/4,
(a—c)/2]

 3rd round: now producing more than 3(a —c)/8 Is
never a BR, thus, Si = [(a —¢)/4, 3(a — ¢)/8]

« andsoon...onlyqu=02=(a—c)/31s
rationalisable
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The linear-demand model is frequently applied. One can, however,
analyse the model also at a general level:

Proposition 12.C.2: in any Nash equilibrium of the Cournot duopoly .rnodf:L f::h
cost ¢ > 0 per unitfor the two firms and an inverse derr_nand function p(-) sati thg
pllg)y <0 for all g=2 0 and p(0) > ¢, the market pr.ma is greater than ¢ (
competitive price} and smaller than the monopaly price.

Suppose inverse demand is p(q) with p’(q) < 0, and production cost are
constant at ¢ per unit as before

Firm 1’s profit function is p(g:+9z2)gi — cqi
So Firm 1’s first-order condition reads:
P'(qi+q2)qi + p(getqe) <c,
with equality if gi >0
In an interior equilibrium, both FOCs must hold
p'(qr+02)qr" + p(ge” +02°) = C
p'(qr" +027)q2" + p(qr” +027) = C
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Adding up the two equations yields
p'(qr+02). (Qr'+02")/2 + p(gr” +q2") = C
We see, that we have p > mc in Nash equilibrium
The FOC of a monopolist reads
p'(q")q ™"+ p(men) =c
Note that we cannot have g™ > g:"+qz". In that
case, one firm could increase its output and

Increase Its profit, and we cannot have g ™" =
s +g2" from the FOCs either

- We see, that we have p(g:” +qz27) < p(g™")

—> The price under Cournot duopoly Is between
perfect competition and monopoly
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Antoine Augustin Cournot (28 August 1801 — 31
March 1877) was a French philosopher and
mathematician.

He provided his model 100 years before Nash!
Cournot = competition In quantities

Bertrand > competing in prices
Cournot = similar to negative externality
Cournot = strategic substitutes (OR(q2)/0q.<0)
Cournot = 0R(qz)/0q:.>-1
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